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This paper proposes a vertex-based graph convolutional neural network (vertex-CNN) for analyzing
structured data on graphs. We represent graphs using semi-regular triangulated meshes in which each
vertex has 6 connected neighbors. We generalize classical CNN defined on equi-spaced grids to that
defined on semi-regular triangulated meshes by introducing main building blocks of the CNN, including
convolution, down-sampling, and pooling, on a vertex domain. By exploiting the regularity of semi-
regular meshes in terms of vertex connections, the proposed vertex-CNN keeps the inherent properties
of classical CNN in a Euclidean space, such as shift-invariance and down-sampling at a rate of 2, 4, etc.
We employ brain images from Alzheimer’s Disease Neuroimaging Initiative (ADNI) (n = 6767) and extract
cortical features (e.g., cortical thickness, surface area, curvature, Jacobian, sulcal depth, and volume) for
the classification of healthy controls (CON), patients with mild cognitive impairment (MCI) and
Alzheimer’s disease (AD). Based on cortical thickness, we show that the proposed vertex-CNN is near 3
times faster and performs significantly better in the classification performance of CON, MCI, and AD than
an existing graph CNN defined on the graph spectral domain given in Defferrard (2016). Moreover, we
examine the robustness of a multi-channel implementation of vertex-CNN on 6 cortical measures for
the MCI and AD classification. Finally, we show a promising finding of the prediction accuracy from
MCI to AD as a function of years before the onset of AD. Our experiments demonstrate the fast compu-
tation and promising classification performance of the vertex-CNN.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Machine learning has been widely used as one of the crucial
techniques for medical image segmentation, registration, disease
prediction, and classification. In these tasks, image data are defined
on an equi-spaced grid in a Euclidean space, where geometric
information of human organs may not explicitly be represented.
Nevertheless, the geometry of human organs characterizes their
intrinsic and complex anatomy, as well as physiological functions.
For instance, the cerebral cortex is composed of gyri and sulci. A
gyrus is a ridge of the cerebral cortex, while a sulcus is a groove
of the cerebral cortex. Because of the way that gyri and sulci are
curved, the cortex is thicker in gyral regions but thinner in sulcal
regions. Hence, it is preferred to represent brain image data in a
way that the underlying cortical geometry is encoded. One can
express the cerebral cortex using triangulated meshes embedded
in a 3D Euclidean space. Existing literature has demonstrated that
such representation incorporates useful geometry information of
the brain in machine learning for disease diagnosis and prediction
(e.g., [44,16,1,36]).

In recent years, deep learning has tackled a wide range of chal-
lenging tasks in image analysis and classification. Among many
architectures of deep neural networks, convolutional neural network
(CNN) receives great attention for its successes in computer vision
(e.g., [40,37,43,41,22,18]), medical imaging and diagnosis (e.g.,
[38,29,15,25]). Classical CNN contains three major blocks, includ-
ing convolution with localized filters, rectified linear unit (ReLU,
non-linear activation function), and pooling. These three blocks
are sequentially concatenated to form a convolutional layer that
represents a simple non-linear function. Then, the integration of
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many such convolutional layers forms a very complex non-linear
function that can model highly non-linear intrinsic patterns of
training data. In medical image applications, existing CNNs are
developed for analyzing medical images defined in a Euclidean
equi-spaced grid. The definitions of their main building blocks
are based on the voxel-connectivity property of equi-spaced grids.
Thus, a direct call of such CNNs to model structured data on graphs
embedded in a Euclidean space certainly is not possible as the ver-
tex connectivity of meshes is different from that of equi-spaced
Euclidean grids. Indeed, it is not trivial to adapt the definition of
convolution in equi-spaced grids to meshes, while keeping the
essential property, such as shift-invariance. The same observation
holds for defining the operation of dyadic sampling on meshes.

This paper aims to extend classical CNNs from equi-spaced
grids to meshes and develop a vertex-based graph CNN (vertex-
CNN) for analyzing structured data on semi-regular triangulated
meshes. The connectivity of most vertices on a semi-regular trian-
gulated mesh is 6. A semi-regular triangulated mesh has certain
similarities to equi-spaced grids in a Euclidean space. When image
data are defined on a semi-regular triangulated mesh, a direct call
of a generic CNN for a mesh certainly is sub-optimal, as it discards
specific connectivity regularity of the mesh. Indeed, the ordering
property of a semi-regular triangulated mesh allows us to better
mimic classical convolution. The most desired property of classical
convolution remains the same for the convolution on meshes, that
is, the dimension of the parameter space of convolutional filters is
the same as the number of vertices involved in each shift. More-
over, down-sampling a semi-regular mesh is more flexible in terms
of a sampling rate and can be done more efficiently than down-
sampling a general graph. We employ brain images from Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) (n = 6767) and
extract cortical features (e.g., cortical thickness, surface area, cur-
vature, Jacobian, sulcal depth, and volume) for the classification
of healthy controls (CON), patients with mild cognitive impairment
(MCI) and Alzheimer’s disease (AD). Based on cortical thickness
data, we compare the computation time and the classification per-
formance of CON, MCI, and AD between the vertex-CNN and an
existing graph CNN based on the graph spectral domain in Deffer-
rard (2016). Moreover, we examine the robustness of a multi-
channel implementation of vertex-CNN on 6 cortical measures
for the MCI and AD classification. Finally, we show a promising
finding of the prediction accuracy from MCI to AD as a function
of years before the onset of AD.

This paper contributes to.

� Unlike existing graph neural networks, we exploit the regularity
of semi-regular meshes and develop a fast vertex-CNN that
mimics the convolution and pooling operations of classical
CNN for analyzing structured data on meshes.
� The proposed vertex-CNN keeps the inherent properties of clas-
sical CNN in a Euclidean space, including shift-invariance and
down-sampling at the rate of 2, 4, etc.
� The proposed vertex-CNN is near 3 times faster than graph CNN
defined on the graph spectral domain in Defferrard (2016).
� We proposed a multi-channel vertex-CNN that incorporated 6
cortical measures and achieved the outstanding classification
accuracy of MCI and AD.
� We provided a unique finding on the prediction of AD as a func-
tion of years before the onset of AD.

2. Review on relevant work

Graph convolutional neural networks (graph CNNs) are deep
learning techniques that apply to graph-structured data. Graph-
structured data are in general complex, which imposes significant
challenges on existing convolutional neural network algorithms.
2

Graphs are irregular and have variable number of unordered ver-
tices with different topology at each vertex. This makes important
algebraic operations such as convolutions and pooling challenging
to apply to the graph domain. Hence, existing research on graph
CNN has been focused on defining convolution and pooling
operations.

For convolution, there are two types of approaches for defining
convolution on mesh/graph, one is in a vertex domain and the
other is in a spectral domain. Existing vertex-based definitions of
convolution focus on how to process the vertices whose neighbor-
hood has different sizes and connections. Several methods have
been proposed in the past, including Diffusion-Convolutional Neu-
ral Networks (DCNNs) [2], PATCHY-SAN [32,13], Gated Graph
Sequential Neural Networks [24], DeepWalk [35], and so on. An
alternative approach is to map individual patches of a mesh to a
representation that is more amenable to convolution. Here are
some examples for such a representation, including 2D polar coor-
dinate representation [28], local windowed spectral representation
[4], anisotropic variants of heat kernel diffusion filters [6,5], Gaus-
sian Mixture-model kernels [30,31], and so on.

There have been several methods proposed for the definition of
convolution in a spectral domain (see e.g., [7,9,19,21,45,23,39]).
Based on spectral graph theory, Bruna et al. [7] proposed a CNN
for graph-structured data in a spectral domain in which the convo-
lution is defined as the multiplication operation of a diagonal
matrix in graph Fourier transform derived from a normalized graph
Laplacian. As such, the convolution may not be localized and hence
the diagonal entries of the multiplication matrix need to be regu-
larized with a smooth prior for possible localization. To avoid the
cost of calculating a graph Laplacian and have a convolution with
better localization, Defferrard et al. [9] introduced Chebyshev poly-
nomial approximation such that the resulting convolution operator
is a polynomial of the adjacency matrix of a graph. Kipf and Well-
ing [21] further simplified the approximation using the linear poly-
nomial of the adjacency matrix of a graph and used the resulting
CNN as the tool for semi-supervised learning. In [9,39], it is shown
that a k-order polynomial formation of the graph Laplacian per-
forms a k-ring filtering operation. Representing polynomial filters
as linear combinations of Chebyshev polynomial recurrence rela-
tion allows rapidly apply these filters in the spatial domain.

Nevertheless, the convolution built on the polynomials of the
adjacency matrix is quite different from classical convolution on
Euclidean equi-spaced grids, especially on the aspect of expression
power determined by the dimension of a parameter space. To be
more specific, the localized convolution for Euclidean equi-
spaced grids whose dimension of a parameter space, the size of fil-
ters, is indeed the same as the number of vertices it covers for each
shift. However, when considering a convolutional filter derived
from the polynomial degree of k, it is parameterized by kþ 1ð Þ
parameters. The support of such a convolution, i.e., the number

of the vertices it covers for each shift, is 3k2 þ 3kþ 1 vertices for
a regular triangular mesh whose vertices have 6 connected neigh-
bors. The main idea of CNN is that it uses filters of small size to col-
lect local information. Then, in a multi-scale manner, it gradually
increases the filter width and down-sizes the features to represent
more global and high-level information of image data. Hence, a
convolutional filter that covers a large number of vertices with
few parameters, such as a convolutional filter derived from the
polynomial degree of k, is likely to miss important local features
which can be helpful for modeling image data.

Moreover, how to down-sample images in CNN is also an
important operation that is used in both convolution with stride
> 1 and pooling to abstract more high-level information in a
multi-scale manner. The graph coarsening procedure used for
pooling in [9] is implemented by calling a weighted graph cut



Fig. 1. The ordering of the 1-ring neighbors. The mesh, T, is represented in black.
The sphere (blue) approximates the neighbors of vertex xi and the tangent plane at
xi is in orange. The points colored in orange are the projected points of the
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method in [10]. From the coarsest to the finest level, fake vertices,
i.e., disconnected vertices, are added to pair with singletons such
that each vertex has two children. The fake vertices artificially
increase the dimensionality of the graph, which increases the com-
putational cost even when the number of singletons from multi-
level clustering algorithms is not very large.

In the following, we describe the vertex-based CNN and tackle
both convolution and pooling operations. While taking an advan-
tage of the regularity of a semi-regular triangulated mesh, we are
able to define these two operations in an efficient manner.

3. Methods

3.1. Motivation from CNN defined in Euclidean spaces

Classical CNN is designed to extract features from input images
and to perform image recognition and classification. Images used
in classical CNN are defined on equi-spaced grids in a Euclidean
space. There are 3 essential operations to form a convolutional
layer in classical CNN, including convolution with localized filters,
rectified linear units (ReLU), and pooling.

Consider an input image f defined on Euclidean equi-spaced
grids kf gk2Z2 , and a finite filter h supported on a finite subset
X � Z2. The convolution between f and h is defined as

f � hð Þ m½ � ¼
X
n2Z2

f m� n½ �h n½ �: ð1Þ

It can be seen that the value of f � hð Þ m½ � is the weighted aver-
age of f over the neighbors of m, whose weights are specified by h
and neighbors are determined by the configuration of X.

ReLU, such as max, sigmoid, or tanh function, introduces non-
linearity into the convolutional layer and operates at each pixel.
For the pooling operation in classical CNN, spatial pooling is con-
sidered as a general practice. It is equivalent to down-sampling
that reduces the dimensionality of images and retains important
information. When a down-sampling rate is 2, we define it as a
stride of 2 in which the filter moves 2 vertices at a time. In general,
when stride is k, then the convolution in Eq. (1) can be rewritten as

f � hð Þ m½ � ¼
X
n2Z2

f m� kn½ �h kn½ �: ð2Þ

Both convolution and pooling in classic CNN are operated on
Euclidean equi-spaced grids, which makes spatial shift and
down-sampling straightforward. In the following, we generalize
these two operations from Euclidean equi-spaced grids to a trian-
gulated mesh but retain the same properties, e.g., spatial shift-
invariance property of convolution and down-sampling.

3.2. Convolution in the vertex domain

Consider a triangulated mesh

T ¼ xif g; Rijk
� �� �

; i; j; k 2 1; . . . ;Nf g;
where xif g denotes the set of vertex coordinates, Rijk

� �
is the set of

triangles, and N represents the total number of vertices on the
mesh. Each simplex Rijk is a 3-tuple of vertices
i; j; kð Þ; i; j; k 2 1; . . . ;Nf g that forms a triangulated face with three
vertices xi; xj and xk. The three vertices are one-ring neighbors of
each other.

The shift-invariant convolution in Euclidean equi-spaced grids
in Eq. (1) cannot be easily achieved on T due to its irregularity. In
this study, we consider T as a semi-regular triangulated mesh
whose vertex has 6 neighbors. In this case, for vertex, xi 2 T , the
set of its neighboring vertices can be denoted as Pi � xif g :
3

Pi ¼ P i;1½ �; P i;2½ �; . . . ; P i;6½ �f g:
In Euclidean equi-spaced grids, the order of neighbors of each

pixel can be easily defined in a clockwise or counter clockwise
sequence. For instance, for a pixel of a 2D image, xi;j, the order of
its neighbors in a clockwise order can be written as
xiþ1;j; xiþ1;jþ1; xi;jþ1; xi�1;jþ1; xi�1;j; xi�1;j�1; xi;j�1; xiþ1;j�1. However, for
vertex, xi 2 T , the order of its neighboring vertices, Pi, does not
come naturally. In this study, we define the order of neighboring
vertices as follows. As illustrated in Fig. 1, we first define a sphere,
Si (blue in Fig. 1), that passes xi and approximates the mesh
formed by Pi. The tangent plane (orange in Fig. 1) of xi on T is
defined as the tangent plane of xi onSi. The xyz-coordinate system
of the tangent plane of xi (red in Fig. 1) is the translation and rota-
tion of the coordinate system of Si (black in Fig. 1). We then order
these six vertices in a clockwise sequence, where P i;1½ � is defined
as the vertex whose projection is the closest to the x-axis of the
tangent plane of the vertex, xi. Notice that this ordering method
is one definition for mesh orientation. Any other mesh orientation
approach can be used to define the order of neighborhood vertices.

We can now define the convolution operation on T analogous to
Eq. (1). Consider a 1-ring filter h 2 R7:

h ¼ h 0½ �;h 1½ �;h 2½ �; . . . h 6½ �½ �>:
Then, at vertex xi, the value of a signal f defined on T convolved

by h is computed as

f � hð Þ i½ � ¼
X6

j¼0
f
�
i; j½ �h j½ �; ð3Þ

where f
�
i; j½ � denotes the value of f at vertex P i; j½ � and P i;0½ � ¼ xi.

In a matrix form, we define a matrix F 2 R7;N as

F ¼

f
�
1;0½ � � � � f

�
i;0½ � � � � f

�
N;0½ �

f
�
1;1½ � � � � f

�
i;1½ � � � � f

�
N;1½ �

..

. ..
. ..

. ..
. ..

.

f
�
1;6½ � � � � f

�
i;6½ � � � � f

�
N;6½ �

2
6666664

3
7777775
neighbors of vertex xi on its tangent plane.



C. Liu, H. Ji and A. Qiu Neurocomputing 434 (2021) 1–10
Then, the convolution defined in Eq. (3) can be expressed in the
form of matrix multiplication:

f � h : f 2 RN ! h>F 2 RN: ð4Þ
The corresponding columns of vertices with valence < 6 have

non-defined entries. Analogous to classical convolution for finite
signals, the values of these non-defined entries can be defined
using boundary extension. For example, these entries can be
assigned with zero, which is the same as zero-padding boundary
extension in classical convolution.

By the same procedure, we can define a 2-ring convolution and
more. In general, a k-ring convolution can be parameterized by
3k kþ 1ð Þ þ 1 parameters, and its support covers the same number
of vertices. Based on Eq. (3), the convolution on a semi-regular tri-
angulated mesh is consistent with the behavior of classical convo-
lution on equi-space image grids. Localization, parametrization,
and shift-invariance properties enable the convolution in the ver-
tex domain to have fast computation and extract local features of
the data on a mesh. Such ring-type convolution has also been
exploited in wavelet transform for surface denoising (e.g., [11]).

3.3. Rectified linear unit

For classical CNN, a rectified linear unit (ReLU) can be repre-
sented by many non-linear activation functions. The activation
function is a map from R to R, which does not involve any geomet-
rical property of a triangulated mesh. In our proposed vertex-CNN
on a semi-regular mesh, we adopt the well-known ReLU:

f xð Þ ¼max 0; xf g; x 2 R:
3.4. Up-sampling of a triangulated mesh

Down-sampling is one important operation in CNN to control
the dimensionality of features when building a multi-scale repre-
sentation of signals via multiple layers. Down-sampling can see
its usage in pooling and convolution with a stride > 1. The key of
down-sampling signals on a mesh is about how to define a series
of hierarchical triangulated meshes:

T 0ð Þ; T 1ð Þ; T 2ð Þ; . . . ; T Lð Þ
n o

such that T jð Þ at level j contains all vertices of T jþ1ð Þ and new ver-
tices, and T 0ð Þ is the original mesh T at the finest level. Down-
sampling of a triangulated mesh is not straightforward, especially
when retaining the property of semi-regularity.

Nevertheless, there are many approaches for up-sampling of tri-
angulated meshes. In this study, we adopt the up-sampling
approach proposed in [27] which recursively uses a subdivision
scheme to generate new vertices. In details, we subdivide a triangle
Fig. 2. The subdivision scheme of a triangulated mesh. A triangle of v0;v1;v2ð Þ is divi
w0;w1;w2, and their edges w0w1;w0w2;w1w2.

4

in T jþ1ð Þ with 3 vertices v0;v1;v2ð Þ into 4 smaller ones by introduc-
ing 3 new vertices w0;w1;w2ð Þ. w0;w1;w2ð Þ are the midpoints of

three edges of this triangle. The four new triangles in mesh T jð Þ

are given by

v0;w2;w1ð Þ; v1;w0;w2ð Þ; v2;w1;w0ð Þ; w0;w1;w2ð Þ:
Fig. 2 illustrates this subdivision scheme for up-sampling of a

triangulated mesh.
In practice, we start with an initial semi-regular mesh at the

coarsest level and recursively apply the subdivision scheme above,
which leads to a series of hierarchical semi-regular triangular
meshes,

T Lð Þ ! T L�1ð Þ ! T L�2ð Þ ! � � � ! T 1ð Þ ! T 0ð Þ:

The mesh at level jþ 1 is up-sampled by factor of 4 to obtain the

mesh at level j. It can be seen that any vertex x jþ1ð Þ
i at the jþ 1ð Þth

level mesh T jþ1ð Þ remains in the jð Þ-th level mesh T jð Þ, and its 1-ring

neighbors in T jð Þ are 6 new vertices not in T jþ1ð Þ.
With such a hierarchical triangular mesh in hand, one can

define the convolution with a stride of 2;4, and etc. We take the

convolution with stride 2 as example. Let f jð Þ denote the signal

defined on the mesh T jð Þ. Then, the convolution with a stride of 2
is defined by

f jð Þ � h
� �

s¼2
¼ f jþ1ð Þ � h:

This is similar to the one in Euclidean equi-spaced grids in Eq.
(2).

3.5. Pooling

Pooling in classical CNN, viewed as a non-linear or linear down-
sampling operation, aims to reduce the dimensionality of represen-
tation and thus to reduce the number of parameters. This facili-
tates memory usage, increases computational efficiency, and
controls over-fitting. In general, pooling is achieved by either tak-
ing the maximum or taking the averaged value of the neighbors of
the vertices lying on a coarser grid/mesh.

We now define the pooling operation for the vertex-CNN. Sup-
pose that we have a series of hierarchical semi-regular triangulated
meshes constructed in the previous section:

T Lð Þ ! T L�1ð Þ ! T L�2ð Þ ! � � � ! T 1ð Þ ! T 0ð Þ:

Recall that any vertex x jþ1ð Þ
i at the jþ 1ð Þ-th level mesh T jþ1ð Þ

remains in the jð Þth level mesh T jð Þ, and its 1-ring neighbors in

T jð Þ are 6 new vertices not in T jþ1ð Þ. Let X jð Þ
i denote these new 1-

ring neighbors. Then, the pooling operator with a stride of 2 is
defined as
ded into four triangles by introducing the midpoint of each edge of this triangle,



Table 1
Demographic information of the ADNI cohort with MRI scans.

CON MCI AD

ADNI-1
Number of subjects� 243 415 355
Number of MRI scans 1067 1515 1016
Female/Male 493/574 525/990 443/573
Age (Mean � SD) 76.8 � 5.3 75.9 � 7.3 76.3 � 7.2

ADNI-2
Number of subjects� 400 488 261
Number of MRI scans 1122 1460 587
Female/Male 607/515 663/797 254/333
Age (Mean � SD) 75.3 � 6.8 73 � 7.7 75.3 � 7.7

Abbreviations. CON: Control normal; MCI: Mild cognitive impairment; AD: Alz-
heimer’s disease.
The number of subjects for each group was based on the clinical status during the
MRI acquisition visit. There were subjects who fall into 2 or more groups due to the
conversion from one clinical status to another.

Fig. 3. The architecture of the vertex-CNN on a semi-regular triangulated mesh. This vertex-CNN network contains four layers that respectively include 8, 16, 32, and 64
channels. N ¼ 163842 represents the number of vertices on the input mesh.
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Mean pooling : f i½ � jþ1ð Þ � 1
7

X

r2X jð Þ
i

f r½ � jð Þ;

or
Max pooling : f i½ � jþ1ð Þ �max

r2X jð Þ
i

f r½ � jð Þ;

where f i½ � jþ1ð Þ denotes the value at vertex xi in the jþ 1th level mesh

T jþ1ð Þ. Similarly, we can define the pooling operator with a stride of
4 (and more) by running the same procedure on the vertices and its
1-ring and 2-ring neighbors (and more) in the next finer level mesh.

3.6. Architecture and implementation of the vertex-CNN

We are now well equipped with all the components for a
vertex-CNN network. Fig. 3 illustrates one of vertex-CNN architec-
tures. The vertex-CNN network is composed of Lþ 1 connected
stages, M 1ð Þ; . . . ;M Lð Þ;M Lþ1ð Þ. The first L stages are the stages for fea-
ture extraction. Each stage contains three layers: (1) a convolu-
tional layer with multiple 1-ring filters; (2) a ReLU layer; (3) a
pooling layer with a stride of 2 that uses mean pooling:

M ‘ð Þ : input! Convolution! ReLU!Mean Pooling! Output

The last stage M Lþ1ð Þ is the fully connected layer whose nodes
are assigned with the values of the vertices on the mesh at stage
M Lð Þ. Finally, the classification layer uses the features extracted in
the previous stages as input and outputs classification labels based
on a softmax function.

In practice, the input mesh, T Lð Þ, is extracted from image data.
We then prepare a series of hierarchical triangulated meshes,
T L�1ð Þ; T L�2ð Þ; . . . ; T 0ð Þ, according to the subdivision scheme intro-
duced in Section 3.4. These meshes correspond to the mesh in each
stage. The 1-ring convolution operation is implemented in the
form of matrix multiplication. The ReLU and pooling layers are
implemented using the standard procedure of classical CNN. The
vertex-CNN is trained using the Adam optimization algorithm.
We implement this vertex-CNN on a semi-regular triangulated
mesh in Tensorflow.

4. Results

In this section, we employed MRI scans from ADNI and com-
pared the vertex-CNN with existing graph methods in terms of
computational time and classification performance. We chose
spectral graph CNN in [9] because its convolutional filters were
defined in the spectral domain while the convolutional filters of
the vertex-CNN were defined in the spatial domain. Hence, the
vertex-CNN and spectral graph CNN [9] were comparable. We then
5

explored the classification accuracy and robustness of a single-
channel vertex-CNN and a multiple-channel vertex-CNN as well
as the prediction of AD as a function of the AD onset.
4.1. MRI data and analysis

4.1.1. ADNI cohort
This study employed data from the ADNI cohort. The ADNI-1

cohort included 1013 subjects (243 cognitive normal (CON), 415
mild cognitive impairment (MCI), and 355 Alzheimer’s disease
(AD)). The ADNI-2 cohort included 1149 subjects (400 CON, 488
MCI, and 261 AD). For each ADNI cohort, the number of visits of
each subject varied from 1 to 7 (i.e., baseline, 3-, 6-, 12-, 24-, 36-,
and 48-month). At each visit, subjects were diagnosed as one of
the three clinical statuses based on the criteria described in the
ADNI protocol (http://adni.loni.usc.edu). The demographic infor-
mation of the subjects from ADNI-1 and ADNI-2 is provided in
Table 1.
4.1.2. MRI acquisition and analysis
Structural T1-weighted MRI scans were acquired using either

1.5T or 3T scanners. For the 1.5T scanners, the imaging protocol
followed: repetition time (TR) = 2400 ms, minimum full echo time
(TE), inversion time (TI) = 1000 ms, flip angle = 8	, field-of-view
(FOV) = 240 
 240 mm2, acquisition matrix = 256 
 256 
 170
in the x-, y-, and z-dimensions, yielding a voxel size of
1.25 
 1.25 
 1.2 mm3. For the 3T scanners, the imaging protocol
was set to be: TR = 2300 ms, minimum full TE, TI = 900 ms, flip
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angle = 8	, FOV = 260 
 260 mm2, acquisition matrix
= 256 
 256 
 170, yielding a voxel size of 1.0 
 1.0 
 1.2 mm3.

All T1-weighted images were segmented using FreeSurfer (ver-
sion 5.3.0) [17]. The processed images were quality checked based
on the criteria listed on https://surfer.nmr.mgh.harvard.edu/fswik
i/FsTutorial. We represented cortical thickness, surface area, vol-
ume, curvature, Jacobian, and sulcal depth on the cortical surface
generated by FreeSurfer. We employed large deformation diffeo-
morphic metric mapping (LDDMM) algorithm [50,12] to align indi-
vidual cortical surfaces to the atlas and transferred these cortical
measures of each subject to the atlas.

As each subject may have multiple MRI scans, one at each visit,
this study included all available T1-weighted images with good
quality after processing. We used the clinical status at the MRI
acquisition as the classification ground truth. For instance, a sub-
ject with multiple scans may have different clinical labels if he/
she was from one clinical status to another over time. From 3783
scans from ADNI-1, we discarded 185 scans that missed demo-
graphic information or diagnosis labels, resulting in 3598 scans
used below. From 3365 scans from ADNI-2, we discarded 196 scans
that missed demographic information or diagnosis labels, resulting
in 3169 scans used in the following CNN analysis.
4.2. Comparison of computational cost with spectral graph CNN

We compared the computational cost between the vertex-CNN
and spectral graph CNN [9] by employing cortical thickness data
from the ADNI cohort. The architecture of the vertex-CNN and
spectral graph CNN [9] was similar to that illustrated in Fig. 3. Both
the vertex-CNN and spectral graph CNN [9] were designed with 3
CNN layers, a fully connected layer, and a finally connected layer
with 128 nodes, and 1 classification stage. The convolution in the
spectral graph CNN was approximated using Chebyshev polyno-
mial with an order of 3. The network was trained based on 1024
scans from ADNI-2. The network parameters were trained with a
mini-batch size of 64, an initial learning rate of 1e�3, and 10
epochs. The experiments were run on Tesla V100 GPU (32 GB
memory). We compared the two networks when the number of fil-
ters in each layer was 10, 20, 30, 40, 50, 60. As shown in Fig. 4, both
vertex-CNN and spectral graph CNN increased the computational
cost when the number of filters in each layer increased. The
vertex-CNN was approximately 3 times faster than the spectral
graph CNN.
Fig. 4. The computation cost of the vertex-CNN and spectral graph CNN as a
function of the number of filters in each layer.
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4.3. Comparison of classification accuracy with spectral graph CNN

We compared the classification accuracy between the vertex-
CNN and spectral graph CNN [9] based on the ADNI-2 data. Again,
the cortical thickness data from ADNI-2 was used in this experi-
ment. The architecture of the vertex-CNN and spectral graph
CNN was similar to that in Fig. 3. We tuned their network param-
eters, including the number of layers and the number of filters, and
a learning rate, based on geometric mean (GMean =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEN 
 SPE
p

,
where SEN and SPE respectively represent sensitivity (SEN) and
specificity (SPE). We chose this measure because it not only max-
imizes the accuracy of each of the two classes but also minimizes
the difference between the sensitivity and specificity, i.e., the bal-
anced performance for both the positive and negative classes.
Hence, the network parameters were determined so that each net-
work achieved its best balanced sensitivity and specificity. Based
on GMean, the vertex-CNN was designed with 4 CNN layers and
1 classification stage. The numbers of the filters in these convolu-
tional layers were 8;16;32;64½ �, respectively. The classification
layer was implemented using a fully connected layer with 512
nodes and with a softmax output. The spectral graph CNN [9]
incorporated 3 CNN layers with the number of filters of [8,16,32]
respectively and a final fully connected layer with 128 nodes.
The convolution in the spectral graph CNN was approximated
using Chebyshev polynomial with an order of 3. The network
parameters were trained with a mini-batch size of 64, an initial
learning rate of 1e�3, a weight decay of 0.05, and a momentum of
0.9. During the training process, a l2-norm regularization function
of 5e�4 was applied as the weight of the final fully connected layer
to prevent overfitting to the training data.

This study employed the 10-fold cross-validation, where the
scans from the same subject were assigned to the validation (or
testing) to avoid the data leakage issue in the predictive model.
We performed the same procedure as mentioned above for three
classifiers, including CON vs. AD, CON vs. MCI, and MCI vs. AD.
Table 2 lists the classification accuracy, sensitivity, specificity,
and GMean for each classifier. Our proposed vertex-CNN per-
formed better than the spectral graph CNN in all the three classi-
fiers in terms of classification accuracy, sensitivity, and GMean.
Moreover, our vertex-CNN approach provided a relatively lower
variability across all the four evaluation measures.
4.4. Multi-channel vertex-CNN for MCI and AD classification

In this study, we investigated the robustness of the vertex-CNN
for the classification of MCI and AD. For this, we designed one-
channel vertex-CNN (see Fig. 3) and six-channel vertex-CNN (see
Fig. 5). The ADNI-2 data (n = 3169) were used to train the network.
The ADNI-1 data (n = 3598) were used to examine the robustness
of the vertex-CNN.

First, we applied the one-channel vertex-CNN to six individual
cortical measures, including cortical thickness, surface area, vol-
ume, Jacobian, curvature, and sulcal depth. The one-channel
vertex-CNN was optimized based on the abovementioned proce-
dure. Based on the ADNI-2 data and the 10-fold cross-validation,
the one-channel vertex-CNN on cortical thickness, in general, out-
performed the one-channel vertex-CNNs on the other five cortical
measures in terms of the classification accuracies of CON vs AD,
and MCI vs AD (Table 3).

We directly applied these trained one-channel vertex-CNNs to
the ADNI-1 data and showed a similar trend that the one-
channel vertex-CNN on thickness classified MCI and AD better than
the other five one-channel vertex-CNNs (Table 4).

Second, we designed a six-channel vertex-CNN based on the
cortical measures, including cortical thickness, surface area, vol-



Table 2
Comparison between vertex-CNN and spectral graph CNN in terms of accuracy (ACC), sensitivity (SEN), specificity (SPE), and geometric mean (GMean). These results were based
on cortical thickness from the ADNI-2 data.

Model Task ACC (%) SEN (%) SPE (%) GMean (%)

vertex-CNN CON vs. AD 89.2 � 0.5 85.2 � 1.0 91.3 � 0.6 88.2 � 0.5
CON vs. MCI 73.3 � 1.1 67.5 � 2.5 76.4 � 1.7 71.8 � 1.2
MCI vs. AD 65.4 � 1.3 66.5 � 2.2 64.4 � 2.7 65.4 � 1.4

spectral graph CNN CON vs. AD 85.8 � 0.8 83.5 � 3.2 87.5 � 2.8 85.4 � 0.8
CON vs. MCI 69.3 � 2.2 65.6 � 7.6 72.0 � 5.4 68.5 � 3.0
MCI vs. AD 65.2 � 1.6 62.6 � 5.2 68.0 � 6.6 65.3 � 1.4

Abbreviations. CON: control normal; AD: Alzheimer’s disease; MCI: mild cognitive impairment; ACC: accuracy; SEN: sensitivity; SPE: specificity; GMean: geometric mean.

Fig. 5. The architecture of the vertex-CNN with multiple channels on a semi-regular triangulated mesh. Each channel of this network contains four layers that respectively
include 8, 16, 32, and 64 filters. N ¼ 163842 represents the number of vertices on the input mesh.
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ume, Jacobian, curvature, and sulcal depth. Individual channel
vertex-CNN was optimized based on the above procedure. We
assembled the classification results from the six channels via a
majority vote. While based on the above findings (Table 3), the
channel on cortical thickness took four votes and the rest channels
only took one vote each. Table 5 lists the classification accuracy for
CON and AD, CON and MCI, and MCI and AD of the ADNI-2 data
based on the six-channel vertex-CNN and the 10-fold cross-
validation.

Table 6 shows the robustness of the six-channel vertex-CNN
directly applying to the ADNI-1 data. Note that the classification
accuracy for CON vs MCI in the ADNI-1 data was higher than that
in the ADNI-2, and it was the opposite for the classification of MCI
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vs AD. This may partly because the MCI subjects in the ADNI-1
dataset were relatively more severe than those in the ADNI-2
dataset.
4.5. Prediction of MCI cconversion to AD

We examined whether the CON vs AD six-channel vertex-CNN
classifier built based on the ADNI-2 dataset can be used to predict
the conversion of MCI to AD. As mentioned above, the training of
this classifier was done via the 10-fold cross-validation. We chose
the CON vs AD classifier that best performed over the 10-fold val-
idations based on GMean. We then applied it to the cortical mea-
sures of 23 early MCI (55 scans) and 48 late MCI (137 scans)



Table 3
The classification accuracy of one channel vertex-CNN based on cortical measures of the ADNI-2 dataset (n = 3169), including cortical thickness, surface area, curvature, Jacobian,
sulcal depth, and volume.

Task Channel ACC (%) SEN (%) SPE (%) GMean (%)

CON vs. AD Thickness 89.2 � 0.5 85.2 � 1.0 91.3 � 0.6 88.2 � 0.5
surface area 79.9 � 0.4 68.4 � 1.7 85.9 � 0.8 76.7 � 0.8
curvature 80.0 � 1.0 77.2 � 1.6 81.4 � 1.2 79.3 � 1.1
Jacobian 81.8 � 0.9 79.1 � 1.8 83.2 � 0.4 81.1 � 1.1
sulcal depth 81.1 � 0.3 79.5 � 1.5 81.9 � 0.8 80.7 � 0.5
volume 88.2 � 0.4 84.3 � 1.3 90.2 � 0.9 87.2 � 0.4

CON vs. MCI Thickness 71.8 � 0.8 72.8 � 1.1 70.5 � 1.7 71.7 � 0.8
surface area 69.7 � 2.1 69.8 � 2.4 69.5 � 2.3 69.6 � 2.0
curvature 80.6 � 1.0 80.0 � 1.4 81.4 � 1.6 80.7 � 1.0
Jacobian 72.6 � 1.2 72.2 � 1.2 73.0 � 3.0 72.6 � 2.4
sulcal depth 74.3 � 1.0 76.2 � 1.7 71.7 � 1.8 73.9 � 1.0
volume 72.9 � 1.1 74.3 � 1.8 71.1 � 2.6 72.7 � 1.2

MCI vs. AD thickness 75.7 � 0.7 67.8 � 1.7 78.8 � 1.5 73.1 � 0.6
surface area 65.2 � 0.9 55.8 � 2.7 68.9 � 2.1 62.0 � 0.8
curvature 60.4 � 1.4 55.4 � 4.2 62.4 � 3.6 58.7 � 0.7
Jacobian 65.1 � 1.1 59.9 � 2.1 67.2 � 1.4 63.4 � 1.2
sulcal depth 64.1 � 0.5 60.0 � 1.3 65.8 � 0.7 62.8 � 0.6
volume 73.0 � 1.0 68.8 � 2.3 74.6 � 2.0 71.6 � 0.6

Table 4
The robustness of one channel vertex-CNN trained based on cortical measures of the ADNI-2 data (n = 3169) and applied to the ADNI-1 data (n = 3598).

Task Channel ACC (%) SEN (%) SPE (%) GMean(%)

CON vs. AD Thickness 88.6 82.6 94.4 88.3
surface area 77.0 61.5 91.7 75.1
curvature 81.9 76.6 87.0 81.6
Jacobian 84.0 85.1 82.9 84.0
Sulcal depth 77.1 66.0 87.7 76.1
Volume 87.7 77.5 97.4 86.8

CON vs. MCI Thickness 80.3 87.5 70.0 78.3
Surface area 74.6 69.5 81.7 75.4
Curvature 77.9 67.2 93.2 79.1
Jacobian 73.7 73.3 74.3 73.8
Sulcal depth 76.6 76.8 76.3 76.6
Volume 73.4 61.7 90.1 85.0

MCI vs. AD Thickness 66.8 72.6 62.8 67.6
Surface area 53.1 73.3 39.6 53.9
Curvature 56.0 55.3 56.5 55.9
Jacobian 63.0 58.0 66.4 62.0
Sulcal depth 62.1 65.3 60.0 62.6
Volume 67.5 65.0 69.2 67.1

Table 5
The classification accuracy of the six-channel vertex-CNN based on the ADNI-2 data and 10-fold cross-validation (n = 3169). The six-channel vertex-CNN incorporated cortical
thickness, surface area, volume, Jacobian, curvature, and sulcal depth data.

Task ACC (%) SEN (%) SPE (%) GMean (%)

CON vs. AD 90.2 � 0.3 86.1 � 0.8 92.3 � 0.5 89.1 � 0.4
CON vs. MCI 75.1 � 0.8 75.5 � 1.1 74.7 � 1.4 75.1 � 0.8
MCI vs. AD 76.0 � 0.6 67.1 � 1.4 79.5 � 1.3 73.0 � 0.4

Table 6
The robustness of the six-channel vertex-CNN directly applying to the ADNI-1 data.

Task ACC (%) SEN (%) SPE (%) GMean (%)

CON vs. AD 89.5 83.1 95.7 89.2
CON vs. MCI 82.2 85.9 77.0 81.3
MCI vs. AD 67.1 72.7 63.4 67.9
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subjects who were subsequently diagnosed as AD in the follow-up
visits. The six-channel vertex-CNN, trained for the CN vs. AD task,
correctly predicted the conversion of 47/55 early MCI scans
(85.5%) and 129/137 (94.2%) late MCI scans to AD. Fig. 6 illustrates
the prediction accuracy as a function of the time interval for the
MCI conversion to AD, suggesting that as the time interval
increased, the prediction accuracy decreased. Note that the predic-
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tion accuracy is high partly because a subset of the AD subjects
were used in the training of the CON vs AD multi-channel vertex
CNN classifier due to the limited sample of AD subjects.

We further evaluated the robustness of the CON vs AD six-
channel vertex-CNN classifier built based on the ADNI-2 dataset
by applying it to the ADNI-1 dataset. In the ADNI-1 dataset, 166
MCI subjects were converted to AD at the follow-up visits and



Fig. 6. The relationship of the prediction accuracy and time interval of the MCI
conversion to AD in the ADNI-1 (blue line) and ADNI-2 (red line) datasets. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

C. Liu, H. Ji and A. Qiu Neurocomputing 434 (2021) 1–10
there were total 498 MRI scans. The CON vs AD six-channel vertex-
CNN classifier predicted the conversion of MCI to AD at the accu-
racy rate of 359/498 (72.1%), comparable to existing results (see
review in [34,8]). Furthermore, Fig. 6 illustrates the prediction
accuracy as a function of the time interval from MCI to AD. Again,
this suggests that as the time interval increased, the prediction
accuracy decreased. This trend was similar to that shown in the
ADNI-2 dataset.

5. Discussion

This paper presents a vertex-CNN for structured data on semi-
regular triangulated meshes. The proposed network exploits the
geometric property of semi-regular triangulated meshes (i.e., each
vertex has 6 connected neighbors) to define the operations of con-
volution and pooling. The implementation of the vertex-CNN is
simple and its computation is elegant and efficient. We compared
it with an existing graph CNN [9] that is in parallel with the vertex-
CNN. We provided a wide series of carefully designed experiments.
Our study included the full set of the ADNI data and demonstrated
the classification performance and robustness of the vertex-CNN
for the application of brain images.

Our results suggest that our vertex-CNN algorithm is faster than
the spectral graph CNN [9]. This is partly because the convolution
operation in vertex-CNN can be simply computed via matrix mul-
tiplication while the convolution in spectral graph CNN [9] is
approximated via Chebyshev polynomials. Also, the mesh coarsen-
ing procedure used in the pooling of the spectral graph CNN [9]
requires the addition of fake vertices with the singletons such that
each vertex has two children. This procedure increases the dimen-
sion of the graph used in the spectral graph CNN. In contrast, the
pooling operation in our proposed vertex-CNN is with a stride of
2, similar to that of dyadic down-sampling on equi-spaced Eucli-
dean grids. Compared to the spectral graph CNN [9], our vertex-
CNN improves the classification accuracies of MCI and AD.

We applied this vertex-CNN to the evaluation of its accuracy
and robustness for the diagnosis of MCI and AD and the prediction
of the MCI conversion to AD. In the past decades, substantial stud-
ies reported the classification among CON, MCI, and AD based on
the ADNI dataset (e.g., [26,33,14,51,46]. Some of them were based
on multi-modal brain images and reported the classification accu-
racy better than that in Table 2 (e.g., [33,14,51,46]). But the sample
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size was relatively small hence the robustness of the classification
results is unclear. Also, most of the existing studies based on the
T1-weighted MRI and deep neural networks reported the classifi-
cation accuracy derived from one subset of the study sample,
which may be biased to the subsample chosen (see review in
[3]). Our study overcame this via evaluating our results based on
10-fold cross-validation and independent training (ADNI-2) and
testing samples (ADNI-1). This study, to our best knowledge, is
the first one that incorporated the data from ADNI-1 and ADNI-2
and hence produced the reliable and robust classification and pre-
diction results.

One limitation of our proposed approach is that it requires
meshes to be semi-regular. In general, the construction of semi-
regular meshes for 3D image data is not an issue. However, our
approach cannot be easily generalized to analyze data on general
graphs, such as social and citation networks [42]. Similarly, our
approach may not be able to apply to point clouds [49], graph
search [20,48], deep feature search [47], etc.
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